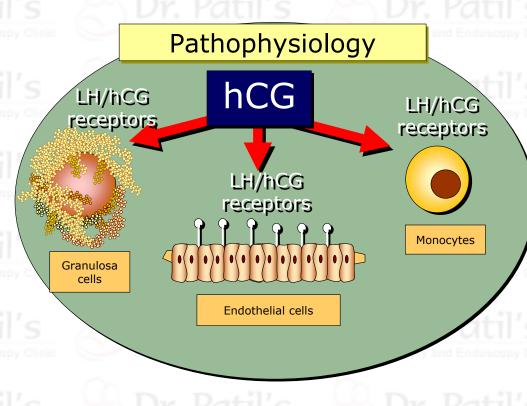
# OHSS - Have we found a solution?



# YES

#### Dr. Madhuri Patil


M.D., DGO, FCPS, DFP, FICOG. (Mum)

Dr. Patil's Fertility & Endoscopy Clinic Bangalore

### Ovarian hyperstimulation syndrome

#### Serious and detrimental complication of ART due to

☑ Ovarian stimulation



### Incidence and risk factors

All women undergoing COS should be considered potentially at risk of OHSS

Mild to Moderate
OHSS - 0.6 to 14%
of 'conventional' IVF
cycles

Severe OHSS 0.2-0.5%

Incidence in 'modified' and 'mild' stimulation protocols is unknown, but likely to be lower Increased risk if

PCOS

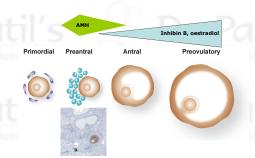
Excessive ovarian response

Younger women < 30 years

Low BMI

High GT dose for OI

Increased hCG exposure -LPS with


hCG and MP

Previous OHSS

Mozes, Lancet 1965 García Velasco & Pellicer, 2002

#### Prior AMH level

at cut off 3.36 ng/ml Sensitivity of 90.5% Specificity of 81.3%



Blood group A
associated with
early-onset
OHSS, putatively via
elevated VWF and

factor VIII

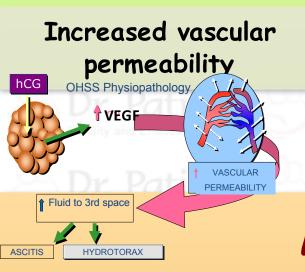
Risk factors Rapidly increasing E2 levels of > 75% from previous day

E2 > 3500 pg/ml on day of hCG



Occurrence of pregnancy




Optimum Cut off value for AFC = >14

Sensitivity 82 %

Specificity 89 %

> 20 oocytes retrieved

#### PATHOPHYSIOLOGY



Arteriolar vasodilation

Dr. Patil

Ovarian

VASCULAR
PERMEABILITY

enlargement
Angiopoietin 2

Fluid leakage

#### MAIN CLINICAL FEATURES

sVE-Cadherin

**Ascites** 

Dr. Patil's Dr. Pati

Intravascular dehydration

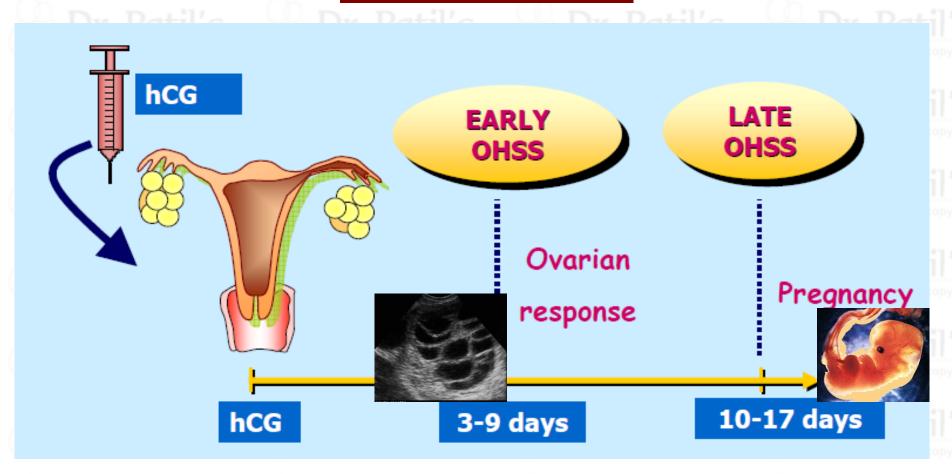
#### SEQUELAE

Thromboembolism Renal dysfunction ARDS Liver dysfunction 1-10% 30% 10-12% 25%

## OHSS - classification of severity

#### Mild

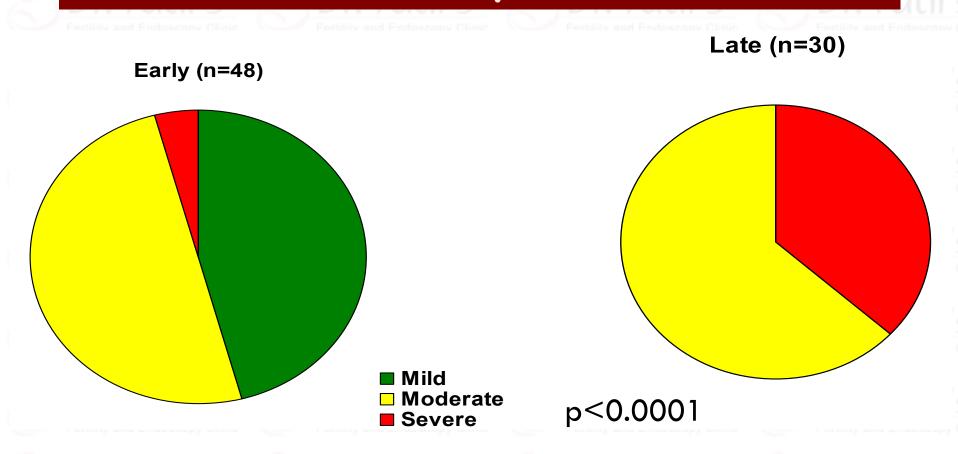
- Abdominal bloating
- · Mild pain
- · Ovaries <8 cm


#### Moderate

- · Moderate abdominal pain
- · Nausea,
- Diarrhoea
   Ultrasound evidence of ascites
   Ovaries usually 8 12 cm



- · Clinical ascites
- · Hydrothorax.
- · Haemoconcentration (Hct >45%, WBC >15,000/ml)
- · Oliguria, Liver dysfunction
- · Ovaries usually > 12 cm


# Classification



Dahl Lyons, 1994; Mathur, 2000

In its severest form, may have serious impact on the patient s health cause severe morbidity and even mortality

# Late OHSS is more likely to be severe than early OHSS



Late OHSS is more difficult to predict from ovarian response

#### Prevention of OHSS

Dr. Patil's

ic Fertility and E

Fertility and Endoscopy Clini

ly and Endoscopy Clinic

Dr. Pati

Dr. Patil's

Dr. Faul 5

Fertility and Endoscopy Clinic

S Dr. Patil

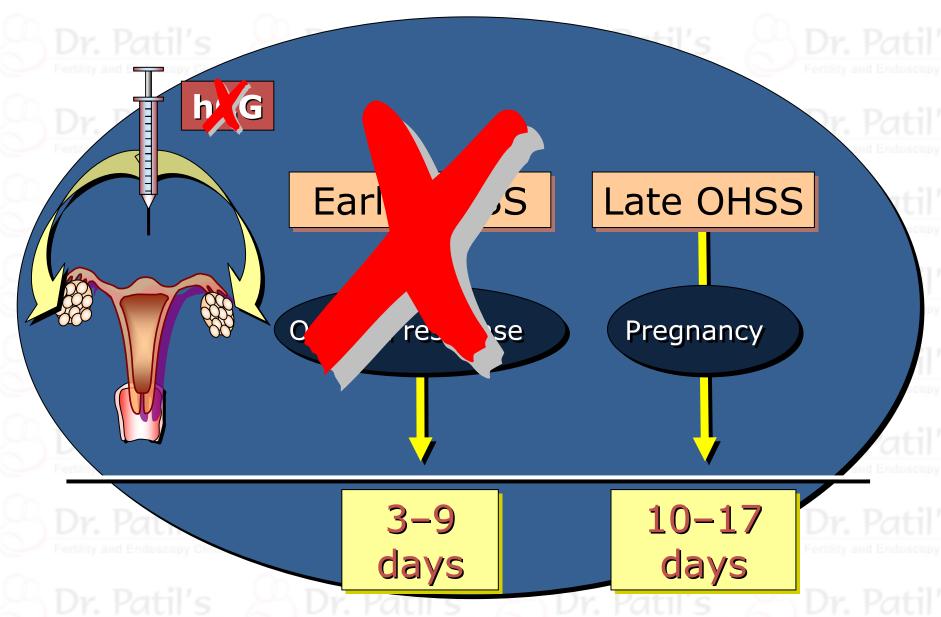
Identify high risk patients and cycle

Use low risk treatment

Specific measures in individual cases

Fertility and Endoscopy Clinic

Fertility and Endoscopy Clinic


Patil's Dr. P

Pertility and Endoscopy Clinic

Fertility and Endoscopy Clinic

and Endoscopy Clinic


### OHSS Prevention



Lyons et al. 1994; Mathur et al. 2000

# Caution is indicated when any of the following indicators for increasing risk of OHSS are present during COS:

- ✓ The emergence of large number of small and intermediate sized follicles (10-14 mm) on USG
- ✓ Presence of > 8 10 dominant follicles
- ✓ Enlarged ovaries
- ✓ Presence of free fluid in POD
- ✓ Rapidly rising serum E2 levels
- ✓ E2 > 3500pg/ml on day of hCG



Mild Ovarian Stimulation

Recombinant human LH for trigger

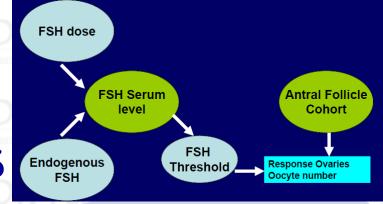
Use of Low risk Treatment

r. Patil 3

Use of GnRH anatgonist instead of GnRH agonist

Dr. Patil's

Patil's


Administration of lower dose or recombinant hCG

GnRh agonist trigger in antagonist cycle

### Gonadotropin Administration

## Key to prevention of OHSS

r. Patil's



Experience careful with OI monitor therapy and recognition of risk factors for OHSS

Highly
individualized
OI regimens
carefully
monitored with
USG and E2

Use of minimum dose and duration of GT therapy necessary to achieve the therapeutic goal

Lower oocyte numbers
and E2 concentrations
may be surrogate
markers of a lower risk
of OHSS

GnRH antagonist vs agonist

Dr. Patil's

2.1 % vs 3.3 %

Papanikolau et al (2006) Fertil Steril Mathur et al (2000) Fertil Steril

Dr. Patil's

Potential for using
GnRH agonist
triggering of
ovulation which has
lower OHSS risk
than hCG trigger

Cochrane Meta-analysis shows a reduced incidence and interventions for OHSS with antagonist vs agonist

Patil's

(Al-Inany et al 2006)

#### Administration of lower dose of hCG

hCG 2500 - 5000 IU as against standard 10000 IU or Rec-hCG 250mcg instead of 500 mcg

250 mg rhCG and 5000 IU hCG produced comparable results

Significantly lower successful oocyte recovery in patients who received 2000 IU hCG

Abdalla et al., 1987

PR, IR and OHSS rate were similar with urinary and recombinant hCG

Driscoll et al., 2000; The European Recombinant Human Chorionic Gonadotrophin Study Group, 2000; Chang et al., 2001

#### Administration of Recombinant LH

5000 - 30000 IU up to 10000 IU safe

Patil's

Effective in inducing final follicular maturation and early luteinization and was comparable with 5000 IU urinary hCG

Resulted in a highly significant reduction in OHSS as compared to hCG

Shoham Z, Schacter M, Loumaye E, Weissman A, Macnamee M, Insler V

# Administration of GnRh agonist instead of hCG for trigger

Substitution of hCG by single GnRH agonist bolus is the safest protocol and avoids cycle cancelation

GnRha SC in cycles not involving previous DR with long agonist protocols or when GnRH antagonist used

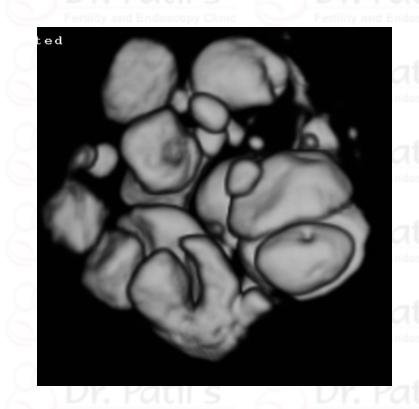
Excellent results obtained with egg or embryo vitrification

Avoid both early- and late-onset OHSS, while eliminating the need for adequate and specific luteal support

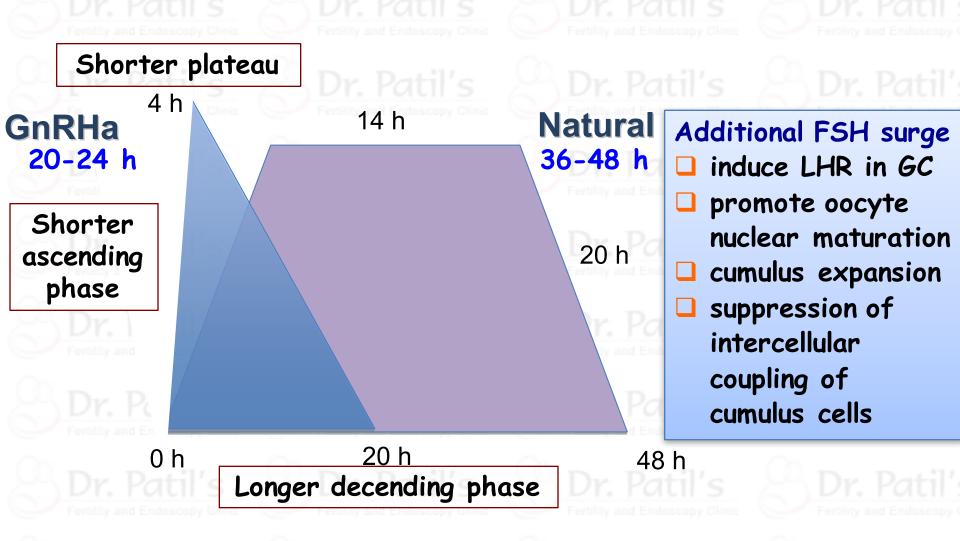
(Kuwayama et al., 2005; Cobo et al., 2008)

Single GnRH agonist injection resulted in combined LH & FSH surges lasting 24 h

Gonen et al., 1990


### GnRH agonist for triggering of ovulation

#### Most commonly used GnRHa triggering doses:


- ♦ Buserelin 0.5mg s.c
- ♦ Triptorelin 0.2mg s.c

Dr. Patil's Patil's

♦ Leuprolide 1mg s.c



#### LH surge: GnRHa vs natural



# Administration of GnRh agonist instead of hCG for trigger

Massive and irreversible luteolysis after GnRHa trigger

Completely prevents early onset OHSS

Endogenous LH surge with short half-life results in defective CL development and significantly reduced total amounts of LH and FSH Segal and Casper, 1992

Direct effect on endometrial receptivity

# Administration of GnRh agonist instead of hCG for trigger

More physiological

Endogenous FSH surge

Steroid level in luteal phase closer to physiological condition

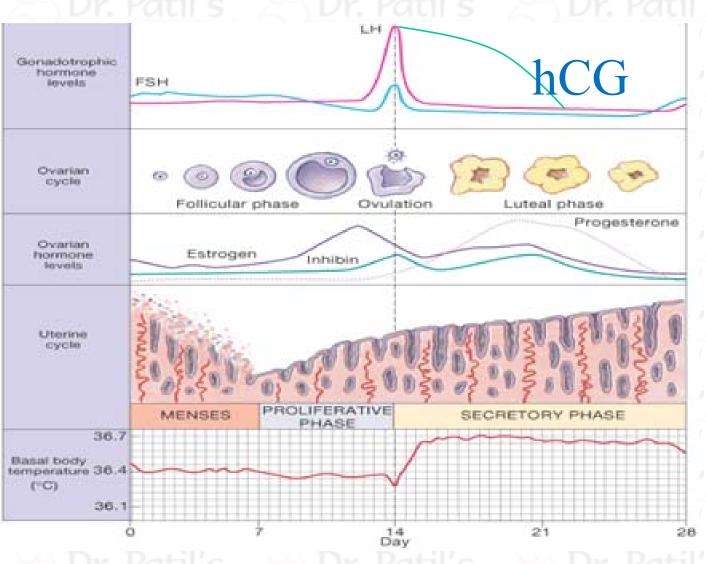
LP impacted severely by COS - So remove ovarian stimulation and then---?

hCG increase LH activity but does not reconstitute the midcycle physiologic FSH surge

Causes rise in intrafollicular P4

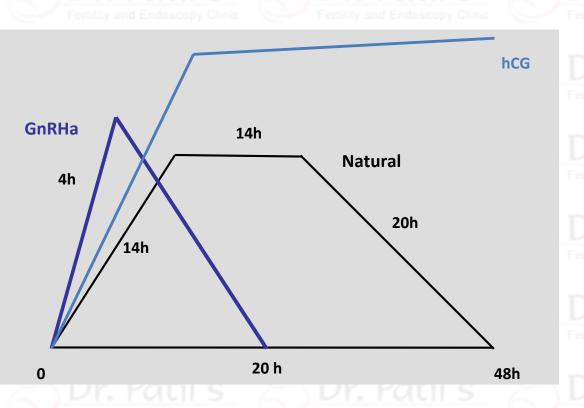
Development of multiple corpora lutea

T1/2 endogenous LH shorter for GnRHa - 20 mins as against 33 hours with hCG


Simpler cycle monitoring with less or no E2 assay

No coasting or cycle cancellation

More MII oocytes
harvested in IVF with
GnRHa


Similar oocyte and embryo quality

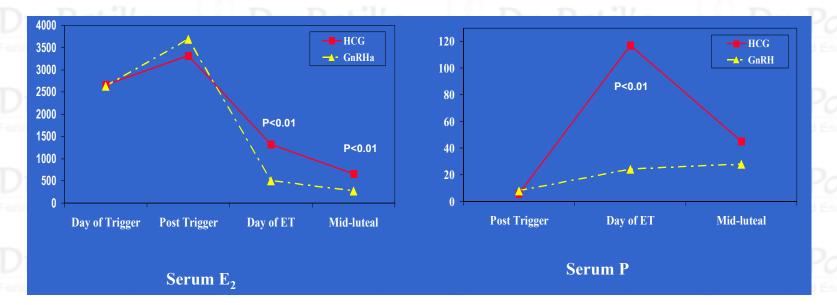
### Dual role of hCG trigger

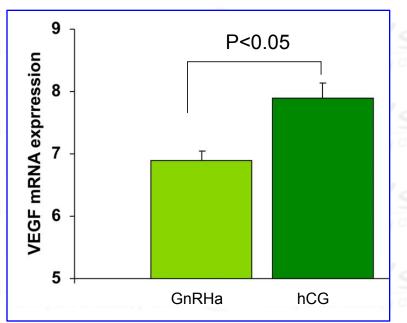


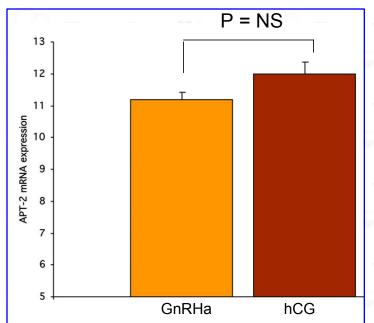
- Final oocyte maturation
- © Early luteal phase stimulation resulting in almost normal Luteal function
- Same dose for both functions?

#### hCG versus GnRH agonist

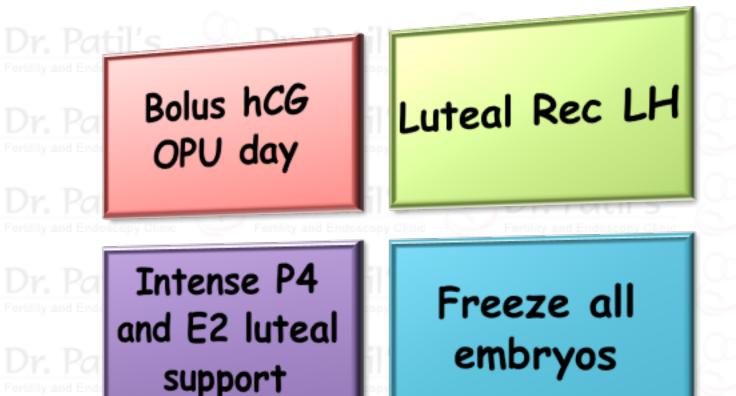



#### Duration of LH surge


LH mean mid-luteal phase


- 6.0 IU/l in natural cycle
  - 1.5 IU/l in GnRH a group
  - 0.2 IU/l in hCG group

(Tavaniotou and Devroey2003) (Humaidan etal, 2005)


## hCG versus GnRH agonist







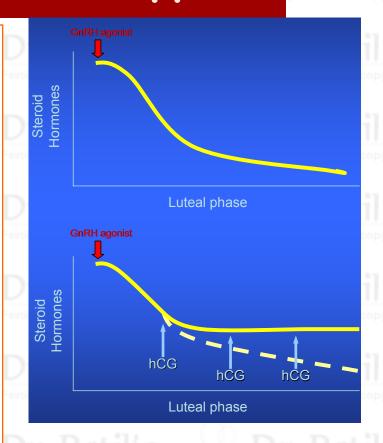
### Strategies after GnRH agonist Trigger

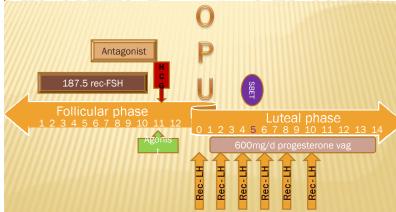


Combination

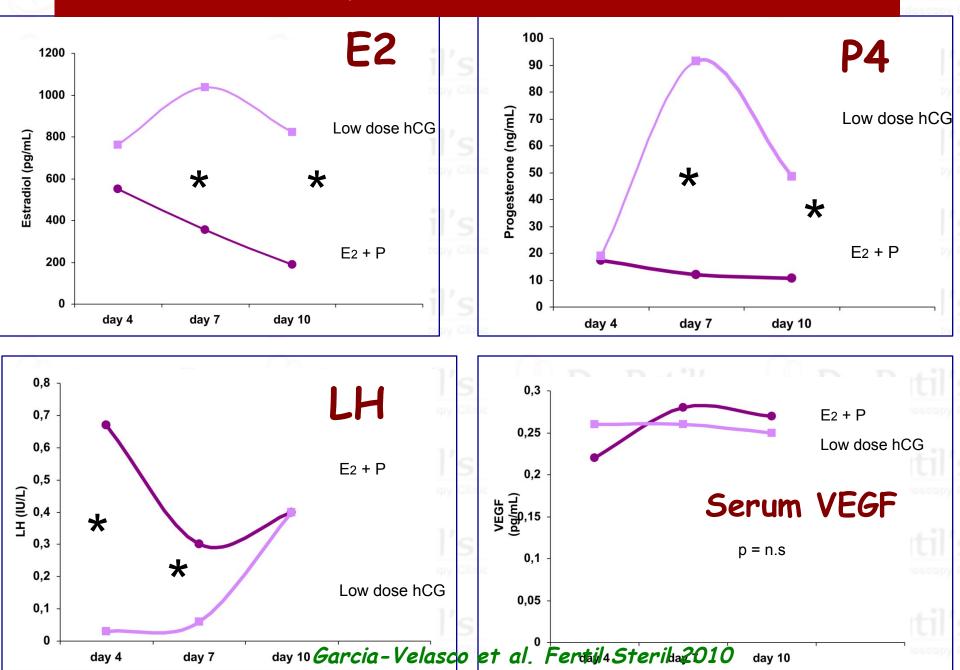
Dv Datil's

Humaidan et al 2010 Castillo et al 2010 Papanikolau et al 2010 Engman et al 2008

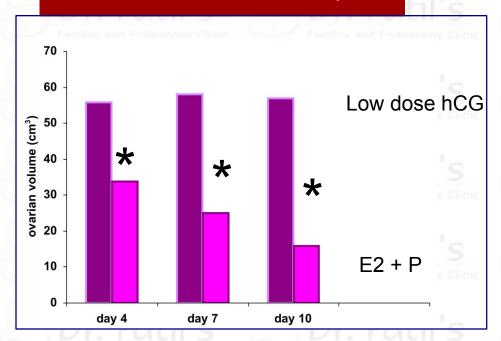

#### Personalized luteal phase support


#### Normo-responder patient (< 14 follicles)

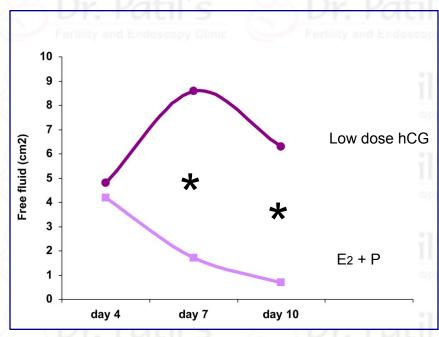
Repeat bolus of hCG (1500 IU, OPU + OPU+5) + E2/P4 (Micronized vaginal progesterone 90 mg/day + Oestradiol 4 mg/day) until 7 weeks


#### OHSS risk patient

- One bolus of hCG (1500 IU, OPU) + E2/P4 (Micronized vaginal progesterone 90 mg/day + Oestradiol 4 mg/day) until week 7
- Rec LH for 10 days from day of OPU 5000 - 30000IU
   10000 IU adequate but ideal dose needs to be evaluated
- Total freeze







#### Hormonal Profile - hCG+P4+E2 vs P4+E2



#### Ovarian volume



#### Free fluid (cm2)



Garcia-Velasco et al. Fertil Steril 2010

|                           | Reference             | Trial type                  | Oocyte      | Ovulation                              | n          | OHSS % (n)              |
|---------------------------|-----------------------|-----------------------------|-------------|----------------------------------------|------------|-------------------------|
| Dr. Patil's               |                       |                             | source      | trigger                                |            | 2 (2 (2 2)              |
| Fertility and Endoscopy C | Babayof et al 2006    | RCT, high risk              | own         | GnRHa<br>hCG                           | 15         | 0 (0/13)                |
|                           |                       | D. COTT. L. L. L. L.        |             |                                        | 13         | 31(4/13)                |
| 00 5 5 111                | Engamnn et al 2008    | RCT, high risk              | own         | GnRHa<br>hCG                           | 33         | 0 (0/33)                |
| Dr. Patil's               |                       | D.CIT.                      |             |                                        | 32         | 31 (10/32)              |
| Fertility and Endoscopy C | Acevedo et al 2006    | RCT                         | donors      | GnRHa<br>hCG                           | 30         | 0 (0/30)                |
| 16 publications           | Bodri et al 2009      | Retrospective               | donors      | GnRHa                                  | 30<br>1046 | 17 (5/30)<br>0 (0/1046) |
| O Dy Datil's              | Bodif et al 2009      |                             | donois      | hCG                                    | 1031       | 1.3 (13/1031)           |
| GnRH Agonist              | Griesinger et al 2010 | Observational,<br>High risk | own         | GnRHa                                  | 40         | 0 (0/40)                |
| trigger:                  | Humaidan et al 2009   | RCT                         | own         | GnRHa                                  | 152        | 0 (0/152)               |
| 995.                      |                       |                             |             | hCG                                    | 150        | 2 (3/150)               |
| 2005 patients,            | Engmann et al 2006    | Retrospective, case-        | own         | GnRHa                                  | 23         | 0 (0/23)                |
| 2005 parients,            |                       | controlled, high risk       |             | hCG                                    | 23         | 4 (1/23)                |
| not a single              | Manzanares et al 2009 | Retrospective case-         | own         | GnRHa                                  | 42         | 0 (0/42)                |
| ( ) Dr. Tauli s           |                       | control, high risk          |             | hCG - cancelled                        |            |                         |
| case of OHSS              | Hernandez et al 2009  | Retrospective               | donors      | GnRHa                                  | 254        | 0 (0/254)               |
| ~                         | Hemandez et ar 2009   | rediospective               | dellers     | hCG                                    | 175        | 6 (10/175)              |
| Dr. Patil's               | Orvieto et al 2006    | Retrospective, high         | own         | GnRHa                                  | 82         | 0 (0/82)                |
| DI. TOUT                  | 01V10t0 0t til 2000   | risk                        |             | hCG                                    | 69         | 7 (5/69)                |
| hCG trigger:              | Shapiro et al 2007    | Retrospective, high         | donors      | GnRHa                                  | 32         | 0 (0/32)                |
| nee miggen                | <b>'</b>              | risk: agonist arm only      |             | hCG                                    | 42         | 1 (1/42)                |
| 92 cases in               | Sismanoglu et al 2009 | RCT                         | donors      | GnRHa                                  | 44         | 0 (0/44)                |
| Fertility and Endoscopy C | Sisting of all 2005   |                             |             | hCG                                    | 44         | 7 (3/44)                |
| 1810 patients,            | Humaidan et al 2009   | Observational, high<br>risk | own         | GnRH, luteal rescue<br>with hCG 1500IU | 12         | 8 (1/12)                |
| 5.1%                      | G-1' 1+ -1 2000       | RCT                         | danana      | GnRHa                                  | 106        | 0 (0/106)               |
| 3.176 and Endoscopy C     | Galindo et al 2009    | KCI                         | donors      | hCG                                    | 106        | 8 (9/106)               |
|                           | Melo at al 2009       | RCT                         | donors      | GnRHa                                  | 50         | 0 (0/50)                |
|                           | Micro at al 2009      | Kei                         | donors      | hCG                                    | 50         | 16(8/50)                |
|                           | Shahrokh et al 2010   | RCT, high risk              | own         | GnRHa                                  | 4          | 0 (0/45)                |
| Fertility and Endoscopy C | SHAIHOKII GU ZUTU     | 1.5 1, 11.511               | - · · · · · | hCG                                    | 45         | 15 (33)                 |

Follicular aspiration

Cabergoline

Embryo cryopreservation

Dr. Patil's

Coasting

Specific measures in individual cases

Dr. Pati

LOD

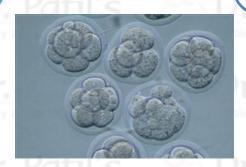
Metformin

In PCOS

Cycle cancellation before hCG administration

Dr. Patil's

Intravenous albumin


hydroxyethyl starch

Cryopreservation of all embryos

Dr. Patil's

Continuation of GnRH agonist or antagonist reduces risk of OHSS by preventing endogenous LH surge

Eliminates risk of late OHSS, but early OHSS can still occur if hCG given for trigger



Consider if patient symptomatic at the time of ET - blastocyst culture provides more time to evaluate

Patients may prefer this to cycle cancellation

Endo et al 2002; Lainas et al 2007 RBM Online

Widely used when GnRH agonist protocols were used - 60%

Delvigne et al 2001 Hum
Reprod

lower PRs with prolonged coasting

Coasting

Reduces risk to 1.3 - 2.5 %

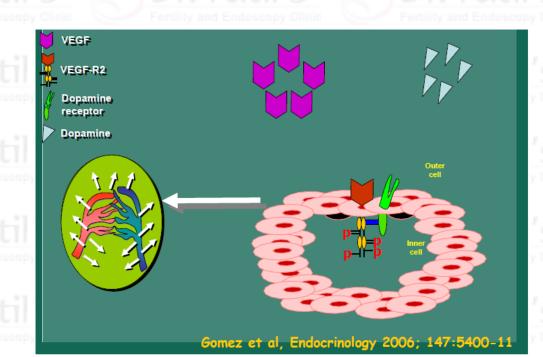
FSH deprivation may allow smaller follicles to undergo apoptosis

#### No RCTs

Criteria for starting and stopping coasting are not uniform

Indirect evidence
suggests lower
VEGF follicular fluid
levels after
coasting

latil's


### Use of Dopamine Agonist

Cabergoline reduces the effects of VEGF-

mediated vascular permeability without

compromising IR and PR Juan Garcia-Velasco

Molecular mechanism
of DA on Vascular
Permeability





# Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis

Mohamed A.F.M. Youssef<sup>1,2,\*</sup>, Madelon van Wely<sup>2</sup>, Mohamed Ahmed Hassan<sup>1</sup>, Hesham Gaber Al-Inany<sup>1</sup>, Monique Mochtar<sup>2</sup>, Sherif Khattab<sup>1</sup>, and Fulco van der Veen<sup>2</sup>

|                                   | Agonist   |         | Control    |       |        | Odds Ratio         | Odds Ratio                      |
|-----------------------------------|-----------|---------|------------|-------|--------|--------------------|---------------------------------|
| Study                             | Events    | Total   | Events     | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI              |
| 1.2.1 Severe OHSS                 |           |         |            |       |        |                    |                                 |
| Alvarez 2007                      | 4         | 41      | 6          | 41    | 40.6%  | 0.63 [0.16, 2.43]  | -                               |
| Carizza 2008                      | 2         | 83      | 2          | 80    | 14.9%  | 0.96 [0.13, 7.01]  |                                 |
| Salah 2009                        | 0         | 75      | 2          | 50    | 22.3%  | 0.13 [0.01, 2.73]  | <del></del>                     |
| Shaltout 2009                     | 1         | 100     | 3          | 100   | 22.3%  | 0.33 [0.03, 3.19]  | -                               |
| Subtotal (95% CI)                 |           | 299     |            | 271   | 100.0% | 0.50 [0.20, 1.26]  | •                               |
| Total events                      | 7         |         | 13         |       |        |                    |                                 |
| Heterogeneity: Chi2 =             | 1.43, df= | 3 (P=   | 0.70); 12: | 0%    |        |                    |                                 |
| Test for overall effect:          | Z=1.48    | P = 0.1 | 4)         |       |        |                    |                                 |
| 1.2.2 Moderate OHSS               | S         |         |            |       |        |                    |                                 |
| Alvarez 2007                      | 7         | 41      | 14         | 41    | 29.1%  | 0.40 [0.14, 1.12]  | -                               |
| Carizza 2008                      | 7         | 83      | 14         | 80    | 32.7%  | 0.43 [0.17, 1.14]  |                                 |
| Salah 2009                        | 2         | 75      | 4          | 50    | 11.7%  | 0.32 [0.06, 1.79]  |                                 |
| Shaltout 2009                     | 4         | 100     | 11         | 100   | 26.5%  | 0.34 [0.10, 1.10]  | -                               |
| Subtotal (95% CI)                 |           | 299     |            | 271   | 100.0% | 0.38 [0.22, 0.68]  | •                               |
| Total events                      | 20        |         | 43         |       |        |                    |                                 |
| Heterogeneity: Chi <sup>2</sup> = | 0.16, df= | 3 (P=   | 0.98); [2: | 0%    |        |                    |                                 |
| Test for overall effect:          | Z= 3.28 ( | P = 0.0 | 001)       |       |        |                    |                                 |
|                                   |           |         |            |       |        |                    | n 18 18 18                      |
|                                   |           |         |            |       |        |                    | 0.01 0.1 10 100                 |
|                                   |           |         |            |       |        |                    | Favours control Favours agonist |

Significantly
lower OHSS
incidence in highrisk patients,
without
compromising
pregnancy

Prophylactic albumin administration at OR

Clear benefit from IV albumin at OR in preventing occurrence of severe OHSS in high risk cases (OR 0.28, 95% CI 0.11 to 0.73)



# Adjuvant Therapies

Hydroxyethyl-starch: (HAES)

Significantly increases intravascular volume, therefore raising osmotic pressure

Serum half-life of 10 h

No anaphylaxis or risk of transfer of infections

Inhibits platelet aggregation

al., 1998, Gokmen et al., 2001

Beneficial effecteinadecrossing Enlight

#### 100 mg IV hydrocortisone after OR and followed orally Immunoglobulin:

Severe OHSS \_\_\_\_\_ low IgG, IgA gamma globulins

IV gamma globulins reduce the severity

Prospective RCT did not reduce the

Corticosteroids:

OHSS rate Tan et al., 1992

Administration of methylprednisolone 16 mg per day, starting on day 6 of and tapered by day 13 after ET was effective in significantly reducing OHSS rate (10%) as compared with 43 0% in control anoun / since at al 2002

# Prospective RCT showed significant reduction in the incidence of OHSS with LOD

Rimington MR, Walker SM, Shaw RW; Egbase PE, Fukaya et al., 1995; Herve Fernandiz, 2011



LOD did not demonstrate significant differences in LBR and ongoing pregnancy rate, miscarriage or OHSS rates





#### - Outlook Stefano Palomba Outlook

Metformin use in infertile patients with polycystic ovary syndrome: an evidence-based overview



#### Metformin

Risk of OHSS was significantly decreased in women with PCOS undergoing IVF or ICSI cycles, with a trend for decreased serum E2 levels

#### **Aspirin**

Reduced incidence of severe or critical OHSS in GnRH agonist long protocol 100 mg/d aspirin from day 1 of cycle (2/780 vs 43/412 p<.001)

Varnagy et al (2009) Fertil Steril

# Follicular aspiration Effect Controversial

Reduces the incidence and severity

Coskun S, Whelan JG 3<sup>rd</sup>, Egbase P E et al Laufer et al., 1990

> Does not prevent OHSS

Aboulghar et al., 1992;Egbase et al., 1998 In - Vitro Maturation of Oocytes

in PCOS patients ,OHSS could be prevented by minimal stimulation and IVM Child et al., 2001

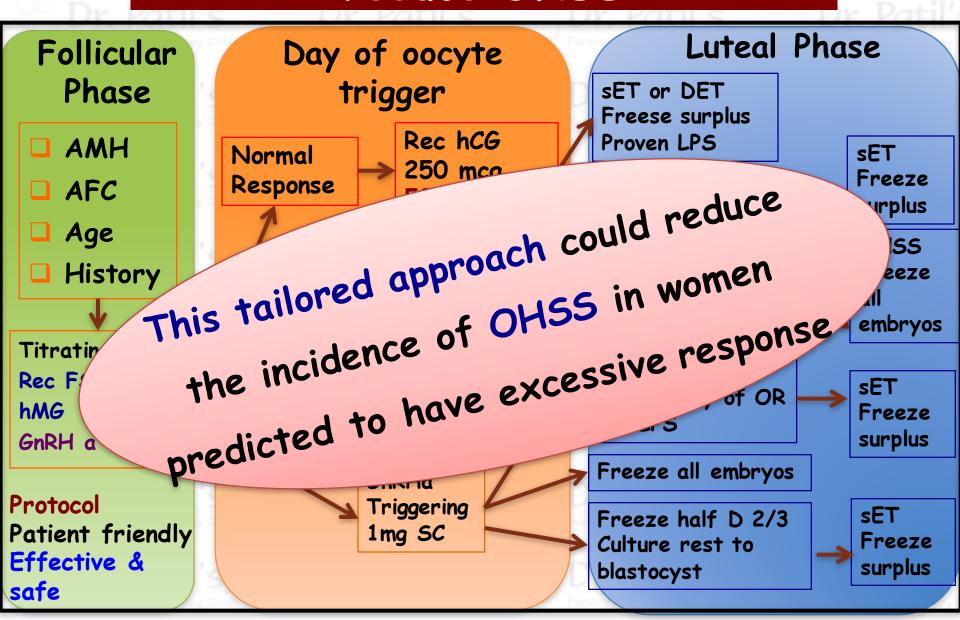
Not achieved PRs comparable to conventional IVFChan et al., 2003



Other Therapies

Dr. Patil

Luteal phase support Avoid hCG, Use P4


Ludwig M, Diedrich K

[Evidence level 1a]

# Interventions that do not reduce the risk of OHSS

| Intervention                     | Grade of evidence |  |  |  |
|----------------------------------|-------------------|--|--|--|
| Intravenous Albumin              | A                 |  |  |  |
| Follicle aspiration prior to hCG | A                 |  |  |  |
| Rec LH instead of hCG            | A                 |  |  |  |
| Rec hCG instead of urinary hCG   | A                 |  |  |  |
| One type of FSH versus another   | A                 |  |  |  |

# Individualization of Protocols to reduce OHSS



#### Conclusion - Prevention

Before During After

Identific factors to

Correct of stimulat

In the past apart from cancellation, none of the approaches were totally efficient, although they decrease the incidence in patients at high risk of OHSS

on of all ansfer in cycle

erone

HCG is primary stimulus for the syndrome
Withholding hCG is the main preventive measure

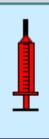
Use a

to be transferred in subsequent cycles

nist post a all

Cycle cancellation or Coasting

embryo ... MPRate thus OHSS

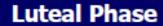

embryos or with Fresh FT?














00000000

**Ovarian stimulation** 

hCG



#### Take home message

GnRH antagonist protocol coupled with GnRHa triggering



Simple

Best method of preventing OHSS in oocyte donors also

However, GnRH agonist trigger leads to lower luteal phase steroidal concentrations

### Take home message

Single blastocyst transfer is strongly recommended

LP and early pregnancy support with adequate E2 and P4 supplementation is essential for optimal outcome

LPS with low doses of hCG in high risk patients, secure a normal pregnancy outcome

Significantly higher rate of early pregnancy loss in the GnRHa group

The Ultimate Goal of ART: Dr. Pati A Single Healthy And Dr. Patil's Happy Baby Dr. Patil s

